Q1. (a)	Complete the following equation for beta minus (β⁻) decay of	
	strontium-90 (38 Sr) into an isotope of yttrium (Y).	
	$^{90}_{38}$ Sr \longrightarrow $^{\cdots}_{\cdots}$ Y + $^{\cdots}_{\cdots}$ β^- + $^{0}_{0}$	(3)
(b)	During β^- decay of a nucleus both the nucleon composition and the quark composition change. State the change in quark composition.	(1)
(c)	A positive kaon consists of an up quark and an antistrange quark $(u\overline{s})$. This kaon decays by strong and weak interactions into three pions. Two of the pions have quark compositions of $(u\overline{d})$. The third pion has a different quark composition.	
	(i) Name the unique family of particles to which the kaon and pions belong.	
		(1)
	(ii) Tick the box corresponding to the charge of the third pion.	
	positive negative neutral	
		(1)
	(iii) Positive kaons have unusually long lifetimes. Give a reason why you would expect this to be the case.	
		(1)

	(iv)	Name the exchange particles which are involved in the strong interactions of the kaon.	and we	ak
			strong interaction		
			weak interaction		(1)
					(Total 8 marks)
Q2. Wł	nich of	the	following is not true?		
	Α		ch meson consists of a single quark and a single iquark.	0	
	В	Ead	ch baryon consists of three quarks.	0	
	С	- .	$\frac{1}{2}$	0	
			e magnitude of the charge on every quark is $\frac{1}{3}$		
	D		article consisting of a single quark has not been served.	0	
					(Total 1 mark)
Q3.	(a)) -	The table gives information about some fundamental particles.		
	C	Comp	plete the table by filling in the missing information.		

particle	quark structure	charge	strangene	baryon number
	uud		0	
Sigma ⁺	uus	+ 1		
	ud		0	0

(7)

- (b) Each of the particles in the table has an antiparticle.
 - (i) Give **one** example of a baryon particle **and** its corresponding antiparticle.

			particle	••
			antiparticle	(1)
		(ii)	State the quark structure of an antibaryon.	
				(1)
		(iii)	Give one property of an antiparticle that is the same for its correspon particle and one property that is different.	ding
			Same	
			Different	
				 (2) (Total 11 marks)
Q4.		(a)	Give the name of a particle that is a hadron.	
				(1)
	(b)		ns are mesons.	
		Give	a possible quark structure for a pion.	
				(1) (Total 2 marks)

- **Q5.** (a) The Σ^+ particle is a baryon with strangeness -1.
 - (i) How many quarks does the $\Sigma^{\scriptscriptstyle{+}}$ particle contain?

		answer	(1)
	(ii)	How many of the quarks are strange?	(1)
		answer	(1)
(b)	The	Σ^{\cdot} decays in the following reaction $\Sigma^{\cdot} \to \pi^{\cdot} + n$	
	(i)	State two quantities that are conserved in this reaction.	
			(2)
	(ii)	State a quantity that is not conserved in this reaction.	(1)
	(iii)	What interaction is responsible for this reaction?	()
			(1)
	(iv)	Into what particle will the neutron formed in this reaction eventually decay	
		(То	(1) tal 7 marks)

Q6.		(a)	Name three types (or <i>flavours</i>) of quark.	
				(2)
	(b)	By :	referring to the charges on quarks, explain why the neutron is uncharged.	
			(Т	(2) otal 4 marks)
Q7.		Lepto	ns, mesons and baryons are three classes of sub-atomic particles.	
	(a)		ne classes of particles are fundamental; others are not. Circle the correct gory for each of these three classes.	
		Lepi Mes Bary		(1)
	(b)	Nar	ne the class of particles of which the proton is a member.	
				(1)

By referring to the charges on up and down quarks, explain how the proton has a

(c)

		cnarge of + 1 <i>e</i> .	
			(2) (Total 4 marks)
Q8.		The equation represents the collision of a neutral kaon with a proton, resultinuction of a neutron and a positive pion.	g in the
		K° + p	
	(a)	Show that this collision obeys three conservation laws in addition to energy momentum.	y and
			(3)
	(b)	The neutral kaon has a strangeness of +1. Write down the quark structure of the following particles.	
		K°	
		π^{\cdot}	
		p	(4) (Total 7 marks)

Q9.		(a) Give the number of nucleons and the number of electrons in an atom of	f ¹¹ Na.
		nucleons	
		electrons	(2)
	(b)	The isotope 22 Na is a positron emitter. In positron emission an up quark un the following change, $u \rightarrow d + \beta^+ + \nu_e$.	dergoes
		Show that charge, lepton number and baryon number are conserved in this	decay.
		charge	·
		lepton number	
		baryon number	(3)
			(5)
	(c)	Describe what happens when a positron collides with an electron.	
			(2) (Total 7 marks)
Q10.		(a) Quarks may be combined together in a number of ways to form sub-g hadrons. Name two of these sub-groups and for each, state its quark comp	
		sub-group 1	
		sub-group 2	

(i)	Complete the following to give an equation that represents the decay of a neutron.
	$n \rightarrow$
(ii)	Describe the change that occurs to the quark structure when a neutron decays.
	(4) (Total 7 marks

(b) A free neutron is an unstable particle.